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Abstract

We study the problem of tracing actual causes, i.e.
given an event e, we seek to fully explain why
that event happened. This problem was articu-
lated by David Lewis in his work on causal ex-
planations [Lewis, 1986al. We address the prob-
lem by defining the causal history of the explanan-
dum event. Informally, the causal history traces
the immediate causes of the explanandum event,
the causes of those causes, and so on to produce
a full explanation. While related, this problem dif-
fers from the problem of determining actual causes
where the focus is on identifying individual events
that contributed to causing the explanandum event.
The central technical contributions of this paper are
(a) a formal definition of causal history in the struc-
tural equations model; and (b) a theorem that estab-
lishes the complexity of the decision problem for
causal histories. In addition, we show that our defi-
nition cleanly explains a battery of problematic ex-
amples from the actual cause literature.

1 Introduction

Actual cause determinations help answer questions of the fol-
lowing form: “Did John’s smoking cause his lung cancer?”,
“What was the cause of the plane crash—a drunken pilot, a
system failure, or a maintenance lapse?”. This kind of deter-
mination is of interest in many fields, ranging from philoso-
phy to law to computer science [Pearl, 2000; Moore, 2009;
Spirtes et al., 2000]. The focus on identifying causes of spe-
cific events separates actual causation from the related topic
of type causation where the focus is on general causal rela-
tionships (e.g., “Smoking causes cancer”).

Most recent treatments of actual causation involve coun-
terfactuals.  The counterfactual tradition goes back to
Hume [Hume, 1748] whose position was that an event ¢ is
a cause of an event e if had ¢ not occurred (the counter-
factual), then e would not have occurred. While this sim-
ple idea does not always work, it provides a starting point
for a significant body of work [Lewis, 1973; Pearl, 2000;
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Hitchcock, 2001; Halpern and Pearl, 2005; Halpern, 2008;
Hall, 2007; Halpern, 2015]. 1In particular, an approach
based on the structural equations model [Pearl, 2000] devel-
oped in the artificial intelligence and philosophy communi-
ties has proved to be influential [Hitchcock, 2001; Hall, 2004;
Halpern and Pearl, 2005; Halpern, 2015]. Our work also em-
ploys the structural equations model but addresses a different
(although related) question.

The problem. Our goal is to trace actual causes, i.e. given
an event e, we seek to fully explain why that event happened.
We do so by defining the causal history of the explanan-
dum event. Informally, the causal history traces the imme-
diate causes of the explanandum event, the causes of those
causes, and so on to produce a full explanation. For example,
the causal history of an accident might indicate that the first
driver changed lanes suddenly without signaling, the second
driver braked immediately, the car skidded because there was
ice on the road and the tires were bald, and then hit a third
car. We are inspired to pursue this goal, in part, because of a
similar goal in Lewis’s work on causal explanations [Lewis,
1986a]. Note that this goal is quite different from the goal of
determining actual causes where the focus is on identifying
individual events that contributed to causing the explanandum
event. Thus, in the accident example above, individual events
(e.g., changing lanes without signaling, ice on the road, bald
tires) will be identified as actual causes; fully explaining why
the accident happened would not be a goal of actual cause
analysis.

Contributions. The central technical contributions of this
paper are (a) a formal definition of causal history in the struc-
tural equations model; and (b) a theorem that establishes the
complexity of the decision problem for causal histories. In
addition, we show that our definition cleanly explains a bat-
tery of problematic examples from the actual cause literature.

The structural equations model (SEM) abstracts the world
using a set of variables and a set of equations that capture the
dependence of each variable on others. An event is simply a
variable taking on a specific value. A simplified version of
the accident example above can be modeled using variables
A, I, C where A = 1 denotes the event that the accident
occurred, I = 1 indicates that the road was icy, C' = 1 indi-



cates that the driver changed lanes without signaling, and the
equation A < I Vv C denotes that an accident occurs when
the road is icy or the driver changes lanes without signaling.
An SEM induces a natural graph (called the causal network)
with a vertex for each variable and a directed edge from vari-
able X to Y if the equation for computing X uses Y. Given
an SEM M, a context i (that supplies the actual values for
variables in the SEM), and an event e with M, 4 = e, our
definition answers the question: Which paths of the causal
network G (M) caused the event e!? Our definition answers
this question as a set of causal slices, where each causal slice
is a subgraph of G(M). All paths in each causal slice must
act jointly to cause the event. However, each causal slice is
sufficient in itself to cause the event. We additionally impose
a necessity/minimality constraint: In each causal slice, we in-
clude a vertex or edge only if it is necessary to produce the
outcome. Thus, each causal slice is a minimal set of paths that
together suffice to produce the outcome. The causal history
of an outcome is the set of all causal slices of the outcome. It
represents a complete explanation of how the outcome came
to be.

In the simplified accident example above, the causal his-
tory will include two causal slices in a context where I =
C = 1: a slice with the path from I to A and a slice
with a path from C to A. If instead the equation in the
example were modified to A < I A C, then there would
be only one causal slice with the two paths. These ex-
amples illustrate that our definition can distinguish between
joint and independent causes—a distinction that is relevant
for joint and several liability in tort cases [Prosser, 1937;
Wright, 1987].

We prove that the decision problem for causal slices is D{)-

complete. D? is the class of computational problems that
can be solved using an NP machine and a co-NP machine
simultaneously. Based on this result, we further show that the

decision problem for causal histories is in HE.

Closely related work. While Lewis articulates the notion
of causal history [Lewis, 1986al, he only discusses it in-
formally. In contrast, we provide a formal definition of
this notion and study the complexity of the associated de-
cision problem. Our definition is inspired, in part, by the
NESS test of causation (necessary elements of a sufficient
set), proposed by Hart and Honoré and examined critically
by Wright in the context of tort law [Hart and Honoré, 1985;
Wright, 1985]. It also shares some commonalities with ac-
tual cause definitions in the structural equation model. The
related work section provides a careful comparison.

2 Desiderata for the cause definition

Before describing the formal definition of causal history, we
discuss the desideratum for such a definition, using simple
examples of boolean circuits.

'In the technical section, we deal with a more general case of
explaining outcomes that are boolean combinations of events.

Example 1 (Joint causes). Consider a boolean circuit with
two inputs connected via an AND gate. This can be modeled
using three boolean variables X, A, B and the equation X <
A A B. In this case, when the inputs are A = 1 and B = 1,
the output is X = 1 and any reasonable definition of cause
should say that both A and B caused this output. Moreover,
these causes are joint in the sense that they must both be at
their actual values 1 for the output X = 1: If either A = 0 or
B =0, then X is 0, not 1.

Example 2 (Causal slices and causal paths). Consider an ex-
pansion of the previous example where A is also obtained
from a circuit: A <~ C' A D. Suppose that the inputs B,
C, D are all 1, so the output X is also 1. In this case, the
causes of X = lare A, B, C, and D. Again these causes are
joint, because if any of A, B, C, D are forced to 0, the output
X will become 0. However, this set is not fully descriptive,
as it does not explain how these causes combine to result in
X = 1. A more descriptive cause would also describe de-
pendencies in the form of relevant paths through the circuit.
Providing a definition of such a descriptive cause is the main
goal of this paper. Specifically, we would want our definition
to say that the paths {C' ~» A ~» X, D ~» A ~~ X, B ~ X}
caused the outcome X = 1, capturing how variables depend
on each other in the circuit. We use the term causal path for
paths like C' ~» A ~» X and the term causal slice for a set of
causal paths like {C' ~~» A ~» X,D ~» A ~ X,B ~ X}
that describes an outcome. It will soon become clear that
causal slices and causal paths really are slices and paths of a
specific graph, namely, the causal network.

Revisiting Example 1, the causal slice would be {A ~~
X,B~ X}
Example 3 (Independent causal paths). Consider a revision
of Example 1, where we replace the AND gate in X’s circuit
with an OR gate: X < AV B. If A =1and B = 1,
then X = 1 and the causes of this output are still A and B.
However, in this case the nature of the relationship between
these two causes is different: Here, the actual value 1 for ei-
ther one of A and B will cause X = 1, even if the other input
is 0. Such causes are called independent causes. We would
like our definition to distinguish joint causal paths from inde-
pendent causal paths, say by outputting two different causal
slices {A ~» X}, {B ~» X} in this example in place of the
single causal slice {A ~~ X, B ~~ X} of Example 1. We use
the term causal history for all causal slices of an outcome.

Example 4 (Mixed causes). In some cases, joint and inde-
pendent causal paths may mix with each other. Consider a
variant of Example 2 where the AND gate in A’s equation
is replaced by an OR gate: A + C Vv D, X + A N B.
Suppose C, D and B are all 1, so X = 1. In this case,
our definition should yield a causal history containing two
causal slices for X =1 —{C ~» A ~ X,B ~ X} and
{D ~ A ~ X B ~» X} — capturing the fact that both
the dependencies A ~~ X and B ~» X, but only one of the
dependencies C' ~» A and D ~» A is necessary for the out-
come.

Preemption Preemption refers to the situation where the
occurrence of an event precludes the possibility of another



event, which was otherwise possible. Modeling preemption
and determining actual cause in its presence is a recognized
challenge. For instance, a series of examples based on pre-
emption were suggested against Lewis’s counterfactual the-
ory [Pearl, 2000; McDermott, 1995; Lewis, 1986b]. Hence,
an important desideratum for us is that our definition de-
termine causal slices accurately in models with preemptive
events. To this end, we propose a new way of modeling pre-
emption, which is compatible with our definition. We explain
this in Section 3.5.

Summary To summarize, the primary desideratum for our
definition of causal history is that it should produce causal
slices and causal paths, not just causal events. Next, we desire
that the definition distinguish joint causal paths from inde-
pendent causal paths. Additionally, we want our definition to
handle preemption-based examples cleanly. In the next sec-
tion, we describe such a definition.

3 Definition
3.1 Model

Before defining causal paths, slices and histories, we need
a language for modeling causal processes (circuits, sys-
tems, etc.) that generate caused and causative events. Fol-
lowing prior work on causation [Halpern and Pearl, 2005;
Halpern, 2015; Pearl, 2000], we model causal processes as
structural equations, which we recap briefly. Variables A,
B, C, X, etc. model inputs, outputs and intermediate circuit
points and are divided into two disjoint sets: the exogenous
variables, whose values are determined by factors outside the
model and the endogenous variables whose values are deter-
mined by the exogenous variables through the causal process
described by the model. A signature S = (U, V, R) specifies
a set of endogenous variables ()), a set of exogenous vari-
ables (/) and a range R(X) for each variable X € U U V.
We assume that V and R(X) are finite. For a set of variables
W, we define R(W) as HxeywR(X).

A structural equations model or, simply, a model M is a
pair M = (S, F) containing a signature S = (U, V, R) and
a set of equations F. JF associates with each endogenous
variable X € V a function F'x : Dx — R(X), where Dy,
the domain of F'x, is a subset of / U V\{X}. Fx speci-
fies how the value of X can be computed, given the values
of all variables in Dx. The relation between X and F'x is
symbolically represented as X < F'x, also called the equa-
tion for X. Every model M induces a directed graph G(M),
called the causal network, whose vertices are elements of )V
and which has an edge from Y to X iff Y € Dy [Halpern
and Pearl, 2005]. Such an edge is written Y ~» X (“Y might
influence X”). As in prior work [Halpern and Pearl, 2005;
Halpern, 2015], we are only interested in models M for which
G(M) is acyclic. In the sequel, we assume that all models
under consideration are acyclic in this sense. A context i is
an assignment of values to all exogenous variables U, i.e.,
an element of R(U). It is clear that given an acyclic model
and a context , the values of all endogenous variables V are
uniquely determined by the equations of the model. These
values are called the actual values of the variables.

Next, we describe the vocabulary with which we express
causative and caused events. A primitive event is an assertion
of the form X = z, where X € V and « € R(X). An event
or formula ¢ is a boolean combination of primitive events.
We say that the primitive event X = z holds in M and 4,
written M, @ = X = =z, if the actual value of X determined
by M and @ is z. We lift this to the judgment M, |= ¢ in
the obvious way.

For any function f : (A; X ... x A, x B) — C and
any @ € R(II?_,A;), we define the specialization of f to
d, written f|z, -, as the function g : B — C defined by

g(b) = f(d,b).
3.2 The definition of causal history

We now present our definition of causal history that captures
the desideratum from Section 2. Briefly, given a model M, a
context # and a formula ¢ with M, @ = ¢, our definition an-
swers the question: Which paths of the causal network G(M)
caused ? Our definition answers this question as a causal
history, which is a set of causal slices, where each causal
slice is a subgraph of G(M). All paths in each causal slice
must act jointly to cause the outcome. However, each causal
slice is sufficient in itself to cause the outcome . Thus paths
within a causal slice are joint causes and paths in two separate
causal slices are independent causes. We additionally impose
a necessity/minimality constraint: In each causal slice, we in-
clude a vertex or edge only if it is necessary to produce the
outcome. Thus, each causal slice is a minimal set of paths
that together suffice to produce the outcome.

Definition 5 (Causal slice, causal path). Suppose we are
given a model M = (S = (U,V,R),F), a context ¥ and a
formula . Let G be a subgraph of G(M), let { X1, ..., X}
be the set of vertices (endogenous variables) in G and for
i € {1,...,n}, let z; denote the actual value of X; over M
and u, i.e., suppose that M, u = X; = z;.

We call G a causal slice of ¢ over M, if the following
hold:

1. (Outcome) /\Z':l(XL = ;) entails ¢. (And, hence,
M, i =)

2. (Sufficiency) For any vertex X; € X ,if X; < Fx,
is the equation for X; and T' = {X,; + xz; | (X; ~
X,) € G}, then Fx, |1y is the constant function that
returns x;.

3. (Minimality) No proper subgraph of G satisfies both
conditions 1 and 2.

If G is a causal slice of  over M, u, then we call each maxi-
mal path in G a causal path.

Intuitively, G is a causal slice of ¢ if it is a minimal sub-
graph of G(M) that suffices to cause the outcome ¢ for the
specific context «. This means that even if all dependencies
X ~» Y outside of G are broken (by using arbitrary values
for X in the evaluation of Y), we still get the ¢.

In detail, the Outcome condition checks that we have in-
cluded enough vertices (endogenous variables) in the causal
slice to justify ¢: The actual values of included variables must



entail ¢. A simple consequence is that, unless ¢ is a tautol-
ogy, at least one endogenous variable occurring in ¢ must
also occur in the causal slice.

The Sufficiency condition says that for each variable X;
that occurs in G, the actual values of variables X; on the
incoming edges of X, in GG are sufficient to force X; to its
actual value, irrespective of the values of other endogenous
variables. This is exactly what the phrase “F'x,
constant function that returns x;” means.

The Minimality condition checks that everything included
in G is necessary for the outcome (.

The causal history of an outcome is the set of all causal
slices of the outcome. It represents a complete explanation of
how the outcome came to be.

TU—T is the

Definition 6 (Causal history). The causal history of ¢ over
M, i is the set of all causal slices of ¢ over M, .

3.3 Examples

‘We now present several examples that illustrate our definition.
We represent causal slices (and graphs in general) as sets of
causal paths.

We start by revisiting Examples 1-4 from Section 2. Ex-
ample 1 can be modeled in structural equations using three
endogenous variables X, A, B, two exogenous variables U4
and Up, which represent the outcomes of the (external) pro-
cesses that determine the inputs A and B, respectively, and
the equations X < A A B, A < Uy and B + Upg.
In the actual scenario, Uy = U = 1. It is clear that
X = 1 holds, so we ask what the causal history of X =1
is. Definition 5 yields exactly one causal slice, as expected:
G = {A ~ X,B ~» X}. To see that this is a causal slice,
note that because X is in G, the Outcome condition is triv-
ially satisfied. Sufficiency holds trivially at A and B because
the right hand sides of the equations of A and B are inde-
pendent of endogenous variables. Sufficiency holds at X be-
cause both the edges A ~» X and B ~» X are in G, so
Fx|r = Fx|lac1,Be1 = (AN B)lacipe1 =1A1=1,
which is a constant function that returns 1, the actual value
of X. Finally, Minimality holds because removing anything
from G breaks Sufficiency at X. For instance, if we remove
A~ X from G, we get Fx|r = (A A B)|g—1 = A, which
is not a constant function.

Example 2 can be analyzed similarly. There, the only
causal slice is {C ~» A~ X, D ~» A~ X, B~ X}.

Example 3 is modeled like Example 1 above, but the equa-
tion for X is X < A v B. Now our definition yields
two causal slices for X = 1: G; = {4 ~ X} and
G2 = {B ~» X} because either one of the edges A ~» X
and B ~» X suffices to force Fx to 1. For example,
Fxlac1 = (AV B)ac1 = (1 V B) = 1, which justifies
the Sufficiency condition at X for the causal slice {4 ~» X }.

Example 4 requires a more tedious analysis, but the result
is the expected one. We get the two causal slices {C ~» A ~~
X,B ~» X} and {D ~» A ~» X, B ~» X}, reflecting the
fact that both the edges A ~» X and B ~» X but only one of
the edges C' ~» A and D ~~ A is necessary for the outcome
X =1

All the examples so far had tree-shaped causal networks.

The following examples demonstrate how our definition han-
dles general acyclic models.

Example 7 (Backup). This example is paraphrased from
Hitchcock [Hitchcock, 2001]. A trainee is required to shoot
at a target. His supervisor is also present. If the trainee loses
his nerve and does not shoot, then the supervisor will shoot.
In the actual scenario, the trainee shoots and hits the target.
What is the causal history of the target being hit? This exam-
ple is interesting because the target is always hit, independent
of whether or not the trainee shoots. Hence, a naive definition
may say that any causal slice should only contain the depen-
dency between the trainee and the supervisor, not the trainee’s
shot itself. However, our definition correctly identifies the ex-
pected causal path from the trainee to the target.

To model this example, we use three endogenous boolean
variables — T (1 if the trainee shoots, 0 otherwise), S (1 if
the supervisor shoots) and H (1 if the target is hit). We also
use one exogenous variable, Uz, which models the outcome
of the external process that decides whether or not the trainee
shoots (U7 = 1 when the trainee shoots). The equations are:
T« Up, S« —Tand H < T V S. We ask for the causal
history of H = 1, when Uy = 1. Note that H = 1 inde-
pendent of the value of Ur. However, intuitively, it is clear
that when U = 1, the trainee’s shot is the cause of the tar-
get being hit, so the only expected causal slice is {T" ~~ H }.
Indeed, our definition determines exactly this causal slice. To
see this, note that this slice satisfies Sufficiency at I because
Fylrer = (T V S)|lre1 = (1 v S) = 1, which is the
actual value of H. Second, note that any graph that does not
include 7' ~~» H cannot be a causal slice of H = 1. This
is because S’s actual value is 0, so unless T is restricted to
1, T Vv S cannot be the constant function 1. If, instead, we
ask for the causal slice with Upr = 0 (the trainee does not
shoot), then our definition correctly identifies the causal slice
{T ~» S ~» H} (trainee does not shoot, therefore the super-
visor shoots and, therefore, the target is hit).

Example 8 (Multiple causal slices with same causal events).
This example illustrates a situation that has more than one
causal slice, but all with the same events (vertexes/variables).
Hence, no definition of cause that finds only events as causes
can output all the nuances of this example and this example
canonically justifies our use of causal slices in place of causal
events for the outcome of causal analysis.

Alice works at a firm. She can be fired if her two managers
Bob and Charlie, and the human resources all agree to fire her.
However, the responsible human resources employee (HR) is
lazy and agrees to fire anyone if either Bob or Charlie wish to
fire the person. In the actual scenario, both Bob and Charlie
agree to fire Alice. Each conveys this to HR, who then also
agrees. As a result, Alice is fired. What led to Alice’s firing?

To model this example, we use four endogenous boolean
variables — F' (1 if Alice is fired), and B, C, H (1 if Bob,
Charlie and HR, respectively, agree to fire Alice). There
are two exogenous variables Up and Ug, which are 1 when
(external) processes determine that Bob and Charlie should
fire Alice. The equations are: FF < B A C A H,
H «+ BV C,B < Ug and C + Ug. In the actual
scenario, Up = Ug = 1, and the goal is to find the causal



slice(s) for F' = 1. It is not difficult to check that there are
two causal slices: {B ~» F,C ~» F,B ~~ H ~» F} and
{B ~ F,C ~ F,C ~ H ~» F}. The edges B ~~ F,
C ~» F and H ~ F are obviously necessary for F' = 1
due to the equation F' < B A C A H. However, only one
of B ~» H and C' ~ H is necessary because HR would
have agreed to fire Alice at the behest of just one of Bob and
Charlie. This justifies the two causal slices informally. Note
also that the set of endogenous variables in both the slices is
exactly the same, {B,C, H, F'}.

Remark 9 (Normality and defaults). Halpern [Halpern,
2008] observes that in many situations considering all pos-
sible counterfactual contingencies for a variable is unreason-
able and results in counterintuitive causal determinations. To
deal with such situations, he proposes to restrict counterfac-
tual contingencies by augmenting models with information
about what is expected or “normal” and what the default val-
ues of variables are (in the absence of other information). We
note that our definitions of causal slice and causal history are
compatible with such restrictions. Specifically, the domains
of the non-specialized variables in the constancy test of the
Sufficiency condition of Definition 5 can be limited to nor-
mal or default values. We omit details due to lack of space.

3.4 Properties and computational complexity

A natural property, rather a sanity check, on our definition
of causal slice (Definition 5) is that a causal slice must con-
tain a path from any endogenous variable in it to a variable
in the outcome ¢, else the former variable obviously cannot
influence the outcome. The following lemma captures this
property.

Lemma 10 (Relevance of variables in causal slices). If G is a
causal slice of ¢ over M, w, and X is an endogenous variable
that appears in G, then there is a path in G that leads from X
to a variable in .

Proof. Immediate from the Minimality condition of Defini-
tion 5. O

Our next property says that every causal slice G has a clo-

sure property: For any variable X in G with actual value z, G
also contains a subgraph that is a causal slice of X = x. This
essentially means that causal slices contain all causes, transi-
tively. For a directed acyclic graph G and a vertex X € G,
define G|x as the subgraph of GG containing only those ver-
tices and edges from which X is reachable along some path
in G.
Theorem 11 (Causal slices are closed). If GG is a causal slice
of ¢ over M, i, X is an endogenous variable that appears in
G and M,4 | X = x, then some subgraph of G|x is a
causal slice of X = x over M, .

Proof. Tt can be proved that G| x satisfies Outcome and Suf-
ficiency conditions for X = z over M,u. Hence, it must
contain a minimal subgraph also satisfying these two condi-
tions. O

Finally, we establish the computational complexity of de-
cision problems for causal slices and causal histories. If all

functions F'x in the structural equations are computable in
polynomial time (i.e., they lie in the complexity class P), then
the problem of checking whether a given subgraph of G(M)

is a causal slice is DF -complete. To recapitulate briefly, DF
contains a language L iff L = L; N Lo, where L1 € NP and

Ly € co-NP. Note that DF is not the intersection of NP and
co-NP. In fact, it contains both these classes. Using this, we
can immediately show that the decision problem for causal

histories is in Hg.
Theorem 12. Assuming that all structural equations are P-
time computable, the following language L is DF-complete.

L ={(M,u,o,G) | G is a causal slice of ¢ on (M, u)}

Theorem 13. Assuming that all structural equations are P-
time computable, the following language L is in Hg.

L ={(M,u,o,H) | H is the causal history of ¢ on (M, u)}

3.5 Handling preemption

Often, the model constrains two or more primitive events to
be mutually exclusive and this property is relevant to the de-
termination of cause. Consider the following example, origi-
nally due to Hall [Hall, 2004] and quoted here from Halpern
and Pearl [Halpern and Pearl, 2005].

Example 14 (Billy-Suzy preemption). Suzy and Billy both
pick up rocks and throw them at a bottle. Suzy’s rock gets
there first, shattering the bottle. Since both throws are per-
fectly accurate, Billy’s would have shattered the bottle had it
not been preempted by Suzy’s throw.

To model this example, we choose three endogenous
boolean variables: ST (1 iff Suzy throws), BT (1 iff Billy
throws) and B.S (1 iff bottle shatters), and two exogenous
variables: Ug (1 when Suzy throws) and Up (1 when Billy
throws). The structural equations are BS < ST VvV BT,
ST < Ug and BT < Upg. We ask for the causal history
of BS = 1 when Ug = Up = 1. From the textual descrip-
tion of the situation, it is clear that Suzy’s throw is the cause.
Yet, our definition also yields Billy’s throw as a cause. For-
mally, we get two causal slices: G; = {ST ~» BS} and
G2 = {BT ~» BS}. This discrepancy arises because, even
though it is clear to us (as humans) that since Suzy’s throw
reaches the bottle first, Billy’s throws cannot reach the bottle
first (i.e., the first event preempts the second), the model is
symmetric in BT and ST and does not capture this preemp-
tion (the model is isomorphic to that of Example 3). Hence,
in applying the definition, we consider the spurious contin-
gency that Billy’s throw reaches the bottle first, which yields
the spurious causal slice.

Hence, the model must be modified to reflect the preemp-
tion. There are many ways to do this. We describe here a way
that is compatible with our definition and relies on additional
exogenous variables. We introduce a new exogenous boolean
variable R that determines whether Suzy’s throw reaches the
bottle first (R = 1) or Billy’s throw reaches the bottle first
(R = 0). The equation for the bottle’s shattering is revised
to BS < if R then ST else BT. We now ask for the causal
history of BS = 1 over M and Us = Ugp = R = 1. Itcan



easily be checked that now we get only the expected causal
slice Gy = {ST ~» BS}.

Note that we introduce the assumption that Suzy’s throw
reaches the bottle first into the context (R = 1) rather than the
model M. To obtain the cause when Billy’s throw reaches the
bottle first, we could simply repose the question with R = 0
without having to change the model. This differs from some
prior work on actual cause, e.g., [Halpern and Pearl, 2005],
where the updated model itself represents the fact that Suzy’s
throw reaches the bottle first. In such cases, the model must
be revised to ask the question about the other circumstance.

This method of modeling preemption through exogenous
variables is quite general. We have successfully applied it
to other examples from literature that require preemption:
early preemption [Hitchcock, 2007; Pearl, 2000] late pre-
emption [Hall, 2004; Hitchcock, 2007] and trumping preemp-
tion [Schaffer, 2000].

4 Relationship with other approaches

In this section, we compare our causal history definition to
related work.

Lewis’ causal history. Our work is most closely related to
Lewis’ notion of causal histories [Lewis, 1986a]. Lewis de-
scribes this notion informally: “The causal history of a partic-
ular event includes the event itself...Further it is closed under
causal dependence: anything on which an event in the his-
tory depends is itself an event in the history...Finally, a causal
history includes no more than it must to meet these condi-
tions.” His definition treats the notion of causal dependence
as a black box. In contrast, we provide a formal definition
of causal history with a specific notion of causal dependence.
We prove the closure property that Lewis demands (Theo-
rem 11). Indeed this was a criteria that we evaluated our defi-
nition against. In addition, we establish the complexity of the
associated decision problem.

NESS test of causation. Our definition of causal slice
draws inspiration from the NESS test of causation (necessary
elements of a sufficient set), proposed by Hart and Honoré
and examined critically by Wright in the context of tort
law [Hart and Honoré, 1985; Wright, 1985]. The NESS test
determines which primitive events (not causal paths or causal
slices) cause an outcome. It says that all the necessary ele-
ments of a set of events that is sufficient to cause an outcome
are causes of the outcome. An equivalent way to formulate
the test is to say that all events in a minimally sufficient set for
an outcome are causes of the outcome. Our definition builds
on this idea, but generalizes it to define entire causal slices
(not just causal events), which is our goal. Specifically, our
definition amounts to applying the NESS test to determine the
outcome’s immediate causes, followed by recursive applica-
tions of the NESS test to find the causes of those immediate
causes and so on. The resulting subgraph of the causal net-
work is our causal slice.

Actual cause definitions. As mentioned in the introduc-
tion, actual cause definitions are motivated by a different

question: Identifying individual events that contributed to
causing the explanandum event [Pearl, 2000; Hitchcock,
2001; Halpern and Pearl, 2005; Hall, 2007; Halpern, 2015].
In contrast, we seek to define the causal history to fully ex-
plain an event. The additional information available in a
causal history is useful to provide a range of explanations
that go significantly beyond what actual causes provide. This
includes distinguishing joint and independent causal paths,
mixed causes, and multiple causal slices with the same events
— as illustrated by the examples in the last two sections of the
paper. This comment is not meant as a criticism of the actual
cause literature but as an elaboration on how the differences
in goals leads to differences in explanatory power. Indeed
Lewis starts his paper on causal explanations with exactly this
point [Lewis, 1986a).

The actual cause literature offers arguments that actual
causes are not transitive [Hitchcock, 2001] — a criticism
of Lewis’ theory of actual causation [Lewis, 1973] (not to
be confused with his work on causal explanation [Lewis,
1986al). A reader might wonder if the intransitivity of ac-
tual cause is inconsistent with the transitive closure property
of our causal slices. We remark that there is no inconsistency
here: We are forcing a causal slice to be transitively closed,
but retaining the separation of direct from indirect causes by
keeping the entire structure of causal paths.

5 Conclusion and future work

We present a new take on the old problem of tracing ac-
tual causes articulated by David Lewis in his work on causal
explanations [Lewis, 1986al. We address the problem by
defining the causal history of the explanandum event. Infor-
mally, the causal history traces the immediate causes of the
explanandum event, the causes of those causes, and so on to
produce a full explanation. The central technical contribu-
tions of this paper are (a) a formal definition of causal history
in the structural equations model; and (b) a theorem that es-
tablishes the complexity of the decision problem for causal
histories. In addition, we show that our definition cleanly
explains a battery of problematic examples from the actual
cause literature.

In future work, we will dig deeper into causal explanations
and explore the space of useful causal explanations that can
be derived from (parts of) causal histories. We will also ex-
plore applications of these methods to debugging computer
systems.
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